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Abstract. We report on a refined version of our spin-glass-type approach to the low-temperature
physics of structural glasses. Its key idea is based on a Born–von Karman expansion of the
interaction potential about a set of reference positions in which glassy aspects are modelled by
taking the harmonic contribution within this expansion to be random. Within the present refined
version the expansion at the harmonic level is reorganized so as to respect the principle of global
translational invariance. By implementing this principle, we have for the first time a mechanism
that fixes the distribution of the parameters characterizing the local potential energy configurations
responsible for glassy low-temperature anomalies solely in terms of assumptions about interactions
at a microscopic level.

1. Introduction

The present contribution is intended to further explore and refine our spin-glass way of looking
at low-temperature anomalies in glasses developed earlier [1, 2]. The term ‘low-temperature
anomalies’ (LTA) refers to a set of observations according to which a number of thermodynamic
and transport properties of glassy and amorphous systems have been found to differ drastically
and unexpectedly from those of their crystalline counterparts [3], when the temperature is
lowered to a few K.

In particular, below approximately 1 K the specific heat of glassy materials has been
found [3] to scale approximately linearly with temperature, C ∼ T , while the corresponding
scaling for the thermal conductivity κ is approximately quadratic, κ ∼ T 2. Both findings
contrast with the T 3-behaviour of these quantities in crystals. Between 1 K and approximately
20 K the thermal conductivity displays a plateau and continues to rise as the temperature
is further increased. The specific heat also changes its behaviour in the 1–20 K regime. It
exhibits a peak if displayed in C/T 3 plots, signifying an excess density of states in that energy
range, which is often referred to as the Bose peak. LTA are remarkable both for their ubiquity,
and for their peculiar pattern of universality and the absence thereof in various temperature
ranges [3, 4]; for reviews, see [5, 6] and the recent collection [7].

The anomalous properties of glasses at low temperatures are usually attributed to the
existence of a broad range of localized low-energy excitations in amorphous systems—
excitations not available in crystalline materials. At energies below 1 K, these are thought
to be tunnelling excitations of single particles or small groups of particles in double-
well configurations of the potential energy (DWPs). This is the main ingredient of the
phenomenological so-called standard tunnelling model (STM), independently proposed by
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Phillips [8] and by Anderson et al [9]. As a second ingredient of the STM, it is supposed that
the local DWPs in amorphous systems are random, and specific assumptions concerning the
distribution of the parameters characterizing them are advanced to describe the experimental
data below 1 K [8, 9]. Excitations at energies between 1 K and 20 K responsible for the
boson peak and (via resonant scattering of phonons) presumably for the plateau in the thermal
conductivity are believed to be of a different nature, namely localized vibrations in anharmonic
single-well configurations of the potential energy (SWPs). The existence of such single-well
potentials is the main additional assumption of the likewise phenomenological soft-potential
model [10,11] (SPM). Within the SPM it is supposed that locally the potential energy surface
(along some reaction coordinate) can be described by certain fourth-order polynomials, with
coefficients distributed in a specific way so as to comprise both DWPs and SWPs, the former
giving rise to tunnelling systems, the latter to localized vibrations.

In both the STM and the SPM, a weak coupling between localized excitations and extended
(phonon) modes is assumed to describe the phenomenology of heat transport and the anomalous
acoustic or dielectric properties of glasses at low temperatures [12].

Although the STM and the SPM describe the phenomenology of glassy LTA reasonably
well, the situation cannot be considered entirely satisfactory.

To begin with, neither model accounts for a mechanism that would explain how the required
local potential energy configurations would arise, and how they would do so with the required
statistics. Indeed, as we have discussed elsewhere [13], the assumptions concerning the
distributions of parameters characterizing the local potential energy configurations in either
phenomenological approach are at best only partially plausible. Moreover, neither model
can explain the considerable degree of universality of the LTA, or the observed absence of
universality at intermediate temperatures. As phenomenological models for LTA, they also
have little to say about relations between low-temperature phenomena and the physics at the
glass transition. Finally, there is growing experimental evidence that things may go wrong
with the assumptions of the STM (and the SPM) as the temperature is lowered into the mK
regime. Let us mention:

(i) the unexpectedly rapid decay of coherent echoes in glasses [14],

(ii) the temperature dependence of acoustic attenuation and dispersion [15],

(iii) unexpected features in the long-time behaviour of hole-burning experiments [16],

(iv) the unreasonably large value of 3 mK for the minimal tunnelling matrix element deduced
from specific heat data [17] and dielectric measurements [18], and finally

(v) the recently reported evidence for a macroscopic quantum state of tunnelling systems in
glasses below 5 mK [19].

These all point to the necessity for a better understanding of interaction effects in glasses at
(very) low temperatures.

It is with these observations in mind that our model-based spin-glass way of looking at low-
temperature anomalies in glasses attempts to fill a gap, and we believe it to carry considerable
potential for clarifying at least some of the unresolved issues that have emerged lately.

Our approach is based on a Born–von Karman expansion of the interaction potential of a
glassy system about a set of reference positions, in which glassy aspects are modelled by taking
the harmonic contribution within this expansion to be random. We derive the justification for
such a procedure from the observation of universality: since the low-temperature anomalies
observed in amorphous systems are apparently to a large extent insensitive to the detailed form
of the interaction, any interaction might be taken as a starting point, as long as it does give rise
to a glassy low-temperature phase.
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The approach leads to a class of models of spin-glass type which exhibit both glassy
low-temperature phases, and double- and single-well configurations in their potential energy.
The distribution of parameters characterizing the local potential energy configurations can be
computed, and differ from those assumed in the standard tunnelling model and its variants.
Still, the low-temperature anomalies characteristic of amorphous systems are reproduced, and
we are able to distinguish properties which can be expected to be universal from those which
cannot.

We have organized our material as follows. In section 2 we briefly describe the original
variant of our approach and describe the main results derived from it. Section 3 introduces
a refined version in which the expansion at the harmonic level is modified to respect the
principle of global translational invariance, from which we derive new insights concerning the
relation between the original particle–particle interaction and the distribution of parameters
characterizing the local potential energy configurations. Section 4 is devoted to main results,
and section 5 to concluding remarks.

2. The spin-glass approach—original set-up

We begin by briefly describing the main ingredients of our original model, referring the reader
to [1, 2, 13, 20] for details, numerical results, and illustrations.

In the original variant of our spin-glass approach to glassy low-temperature anomalies,
we suggested considering the following Hamiltonian as a candidate for the description of a set
of particles forming a glassy system:

H =
N∑
i=1

p2
i

2m
+ Uint({ui}) (1)

with an interaction energy given by

Uint({ui}) = −1

2

∑
i �=j

Jijuiuj +
∑
i

G(ui) (2)

in which glassy aspects are modelled by taking the Jij to be random. On-site potentials of the
form

G(u) = a2

2
u2 +

a4

4!
u4 (3)

are included to stabilize the system as a whole. Through the harmonic term inG, the parameter
a2 controls the number of modes that are unstable at the harmonic level of description. The
parameter a2 may be fixed, or chosen according to some non-degenerate distribution as well
(see below).

The description is in terms of localized degrees of freedom, i.e., the ui are interpreted
as deviations of particle positions from a given set of reference positions as in a Born–von
Karman expansion known from the dynamical theory of crystalline solids. Thus, the system
is assumed to be already in a solid state, and no attempt to provide a faithful description of the
liquid phase is made.

The random interactions are chosen in such a way that the system can be analysed within
replica mean-field theory, e.g., as in the SK model [21]. This implies that the potential energy
surface of the system can be represented as a sum of effective independent single-site potential
energies Ueff(ui) containing random parameters:

Uint({ui}) −→
∑
i

Ueff(ui). (4)
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In the replica-symmetric (RS) approximations these potentials are of the form [1, 2]

Ueff(u) = −heffu− 1

2
J 2Cu2 + G(u) (5)

with

heff = hRS = J0p + J
√
qz (6)

and C = β(qd − q). Here p denotes a macroscopic polarization, and qd and q the diagonal
and off-diagonal entries of the RS Edwards–Anderson order parameter matrix. Apart from
randomness that may be present in G(u), the effective single-site potentials contain a single
random parameter, namely the Gaussian-distributed effective fields heff having mean J0p and
variance J 2q. The parameters p, q, and C characterizing theUeff(u) ensemble are determined
self-consistently through a set of saddle-point equations†.

The model exhibits non-ergodic low-temperature phases, which may be glassy or polar-
ized, depending on the parameters J0 and J ; the glass transition temperature (or the temperature
of the transition into the polarized phase) depends on a2 as well. Replica-symmetry breaking
(RSB) occurs at low temperatures and small a2, and has been analysed within a one-step
replica-symmetry-breaking (1RSB) approximation in [2]. Its main effect is to modify the heff -
distribution, and in particular to reveal correlations between the heff and whatever randomness
one might have considered for the G(u).

The relevance of these results for glassy LTA derives from the fact that theUeff(u) acquire a
harmonic term − 1

2J
2Cu2—entirely of collective origin—that renormalizes the local harmonic

restoring force produced by G(u). Hence for

J 2C > a2 (7)

the total harmonic contribution toUeff(u) becomes convex downward near the origin u = 0, so
for sufficiently small heff the effective single-site potential Ueff(u) attains a DWP form, which
is of collective origin.

The existence within the ensemble of effective single-site potentials of a spectrum of
DWPs with a broad distribution of asymmetries is mainly responsible for the appearance of
glassy LTA via low-energy tunnelling excitations with a virtually constant density of states
(DOS) at low energies, giving rise to the well-known linear temperature scaling of the specific
heat at low temperatures. Higher-order excitations in DWPs and quasi-harmonic excitations
in SWPs give rise to a peak in the DOS, and consequently to a Bose peak. These results were
presented and discussed in detail in [1, 2, 13].

Let us close this section with a few remarks concerning the distribution of parameters in
the effective single-site potentials.

If we choose the parameter a2 in (2), (3) to be fixed and non-random, the effective single-
site potentials Ueff(ui) contain only a single random parameter, namely the effective field heff ,
in contrast to the STM and the SPM, both of which assume two randomly varying parameters.
Indeed, whereas the low-temperature specific heat comes out correctly without a randomly
varying harmonic contribution to G(u), dynamic properties such as ultrasound attenuation
do require a broad a2-distribution in order to be reproduced correctly [20, 22]. While an
assumption of this kind is natural within our approach in view of the fact that the harmonic
contribution to G(u) might have been omitted in favour of diagonal entries Jii in the (random)
interaction matrix, it still creates the (awkward) need for an independent hypothesis concerning
their distribution. We consider this awkward to a higher degree, as it affects local quantities,

† Note that we have changed notation in comparison with our earlier papers, and that we are also using slightly
different conventions—omitting in particular the parameter γ introduced in [1,2] in favour of the interaction scale J .
It should be no problem for the reader to translate results whenever desired.
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whereas assumptions about the Jij -distribution for i �= j contribute to the physics only via
global collective effects less sensitive to details of the underlying assumptions.

3. Translationally invariant interactions

We now describe a modification of the above set-up in which the need for an independent
hypothesis concerning the distribution of local variables is avoided, while at the same time
having the additional benefit of providing an element of physics that had been missing in our
original formulation.

To wit, the interpretation that we have given in support of the ansatz (2) is that the
first harmonic contribution originates from a Born–von Karman expansion of the interaction
energy about an (unknown) set of reference positions. Within such an interpretation, however,
a bona fide interaction matrix ought to respect the principle of global translational invariance—
a feature that had been missing in our original approach. One way of enforcing this principle
is to require

∑
j Jij = 0 for all i, entailing that the diagonal entries Jii of the interaction

matrix are not independent of the off-diagonal ones: Jii = − ∑
j (�=i) Jij . In other words,

translational invariance fixes the diagonal entries of the J -matrix solely in terms of true
interaction contributions. It turns out that this rather slight modification has pronounced
effects on the structure of the theory, which we have only just begun to explore.

Investigating the consequences of this idea quantitatively we choose a slightly different
formulation, replacing (2) by

Uint({ui}) = 1

4

∑
i,j

Jij (ui − uj )
2 +

∑
i

G(ui) . (8)

It has the property that a global translation ui → ui + u (for all i) leaves the first contribution
invariant, irrespective of the choice of the Jij . As in [1, 2] we take the Jij to be Gaussians,
and we adhere to G(u) being non-random and of the form (3), serving stabilizing purposes.
The on-site potentials G(u) do, of course, break translational invariance. However, we have
also begun to look at variants in which the stabilizing contributions are themselves chosen in
a translationally invariant form; results will be presented elsewhere.

Within a replica mean-field analysis, we now need additional order parameters beyond
the polarization and the matrix of Edwards–Anderson order parameters to characterize the
collective properties of the system, namely three replica correlations qabc = N−1 ∑

i 〈uai ubi uci 〉,
and four replica correlations qabcd = N−1 ∑

i 〈uai ubi uci udi 〉, the former, however, only for a = b,
the latter either for a = b = c = d or for a = b and c = d.

So far we have studied the system only in a RS approximation. Details will be presented
elsewhere. Here we only state the main results. In RS one assumes pa = p, qaa = qd , and
qab = q for a �= b as before, and in addition qaaa = Rd , qaaaa = Qd , and qaab = R, qaabb = Q

for a �= b. It turns out that the four replica quantities cancel in RS expressions. The remaining
order parameters are given as solutions of

p = 〈〈u〉〉y,z qd = 〈〈u2〉〉y,z q = 〈〈u〉2〉y,z
Rd = 〈〈u3〉〉y,z R = 〈〈u2〉〈u〉〉y,z. (9)

Here 〈· · ·〉y,z denotes an average over two uncorrelated standard Gaussians y and z, while 〈· · ·〉
is a thermal average corresponding to the RS single-site potential:

Ueff(u) = −heffu +
1

2
keffu

2 + G(u) (10)

with

heff = J0p − 1

2
J 2CR + Jpy + J

√
q − p2z (11)
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and

keff = J0 − J 2C + Jy (12)

with C = β(qd − q) as before, and CR = β(Rd − R). Note that the structure of the theory
is now no longer SK-like as in our original version. In particular, by enforcing translational
invariance at the harmonic level of the Born–von Karman expansion, we now have two random
variables characterizing the local effective potentials instead of one (on top of whatever local
randomness one might wish to consider in the stabilizing on-site potentials G(u)).

4. Main results

We now turn to results. The main properties of the system are:

(i) It exhibits a transition into a glassy phase with q �= 0 at low temperatures (and small a2).
(ii) At sufficiently large J0, the transition is into a phase with macroscopic polarization p �= 0.

(iii) As in the original set-up, the transition into the glassy phase is continuous.
(iv) In phases without macroscopic polarization we have Rd = R ≡ 0.
(v) Though we have not yet performed the stability analysis, we expect RSB to occur at low

temperatures (and small a2).

With respect to the appearance of low-temperature anomalies, the following features
deserve mention:

(i) The potential energy landscape as represented by the ensemble of effective single-site
potentials (10)–(12) exhibits DWPs and SWPs.

(ii) The ensemble is now characterized by two random variables, a random effective field heff ,
and a randomly varying contribution keff to the harmonic force constant. As a consequence,
DWPs will occur with a broad distribution of asymmetries and barrier heights, and both
‘soft’ and ‘hard’ SWPs will be observed.

(iii) In phases with p �= 0 the effective field heff and the harmonic force constants keff are
correlated already in RS; we expect correlations between them to emerge irrespective of
the value of the macroscopic polarization through RSB effects, much like in the original
set-up [22].

At this point it is perhaps appropriate to connect our results with those of simulations
performed to locate and characterize DWPs in Lennard-Jones systems [23]. DWPs observed
in such systems can be parametrized (along the reaction path) by fourth-order polynomials
of the form UDWP(u) = d1u + d2u

2 + d4u
4 (or some equivalent form obtainable through

shifts of coordinates). It is to be noted that such simulations will not have access to the
full range of (d1, d2, d4) triples owing to the non-linear constraint d3

2 + 27
8 d

2
1d4 � 0 which

characterizes DWPs, making it difficult to estimate the full distribution or to decide with
confidence whether empirical correlations observed between the parameters are solely due to
the non-linear constraint that defines the data set or of deeper origin. For the model considered
in the present paper, we have the chance to compare such numerical results with analytic
predictions, e.g. with the marginal distributions of d1 and d2 conditioned on finding DWPs. To
compare with the theory, we have to identify d1 = −heff , d2 = 1

2 (a2 + keff), and d4 = a4/4!.
If we assume, for instance, a non-random d4 and fix the energy scale by choosing d4 = 1,
and furthermore specialize to J0 = 0, entailing p = Rd = R = 0, we obtain the following
conditioned marginal probability densities:

p(d1|DWP) = constant√
2πJ 2q

exp

(
−1

2

d2
1

J 2q

)
erfc

(
3|d1|2/3 + (a2 − J 2C)

J
√

2

)
(13)
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and

p(d2|DWP) = constant√
2πJ 2/4

exp

(
−1

2

[d2 − 1
2 (a2 − J 2C)]2

J 2/4

)
erf

(√
− 8

27d
3
2√

2J 2q

)
. (14)

These are compared with simulation results in figure 1. For d1 the agreement is quite good,
though not for d2. The remaining discrepancies are more probably due to RSB effects (which
induce a priori correlations not related to the non-linear constraints) than to finite-size effects.
Indeed, a major effect of RSB is expected to be a reduction of the value of C [2], which
could already account for much of the observed discrepancy in the d2-distribution. It should
be interesting to see how far our results might eventually carry to help in rationalizing the
findings in Lennard-Jones systems.
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Figure 1. Marginal probability densities for the parameters d1 (left) and d2 (right) in an ensemble
of DWPs generated by the interaction energy (10), with J0 = a2 = 0, J = 1, and d4 = a4/4! = 1.
Full lines: the analytic prediction in the RS approximation. Simulation results were obtained for
systems of size N = 100, using 1000 realizations so as to get reasonable statistics.

Continuing the list of results with a bearing on LTA:

(iv) As DWPs in the glassy phase (and in polarized phases) occur with a broad spectrum of
asymmetries (generated by the heff -distribution) they give rise to a broad spectrum of low-
energy tunnelling excitations with a nearly constant DOS, and thereby to the universal
low-temperature anomalies of specific heat and thermal conductivity.

(v) As in the original set-up, higher-order excitations in DWPs and quasi-harmonic excitations
in SWPs occur with a peaked DOS, producing a Bose peak.

(vi) Because of the unbounded keff -distribution (Gaussian in the RS approximation), we no
longer see a possibility of having amorphous phases without DWPs, unlike in the original
set-up.

(vii) Our previous analysis [2, 13], as to which low-temperature properties might be universal
(those related to tunnelling excitations) and which not (those related to Bose peak
phenomena), remains unaffected by the modifications of the present set-up.

(viii) Last but not least, the proposal (8) embodies for the first time a mechanism for generating
a glassy potential energy landscape with an ensemble of SWPs and DWPs entirely in terms
of interactions at the microscopic level via collective effects, in which the distribution of
both asymmetries and barrier heights of DWPs is amenable to analytic characterization and
follows solely from assumptions about microscopic interactions. We regard this general
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qualitative result as perhaps one of the most significant advances contained in the present
contribution. Indeed, whereas there have always been plausible arguments concerning
relevant features of the distribution of asymmetries of DWPs responsible for the LTA
(broad, symmetric smooth, and hence nearly constant in the interesting energy range), such
arguments have been missing for the distribution of barrier heights (or tunnelling matrix
elements); within phenomenological modelling, it was always necessary to guess these
distributions in a way that gets the main physics correct. Within our refined approach there
is no longer any need for guesswork at this level; everything follows from assumptions
about the interactions at the microscopic level via collective effects (and should—in view
of the universality of glassy LTA—not critically depend on details of these assumptions).
We are, of course, aware that this statement ought to be checked in greater detail than we
have so far been able to do.

5. Concluding remarks

Whether the recent problems with the interpretation of some experiments at very low
temperatures which we mentioned in our introduction are related to the fact that the above-
mentioned guesses concerning tunnelling matrix elements (or concerning the absence of
correlations between parameters characterizing local potential energy configurations) have
not been entirely correct, or whether these problems point to more fundamental issues, we can
at present not tell, as we have not yet been able to address these problems within the refined
formulation of our spin-glass approach presented above.

The fact that the possibility for having phases without DWPs virtually disappears when
global translational invariance is taken into account within a Born–von Karman expansion of
the interaction energy casts some doubt on the interpretation of the low-internal-friction results
of Liu et al [24] as being indicative of an amorphous system without low-energy tunnelling
excitations. While the density of such excitations may indeed be unusually low in the a-Si
samples of Liu et al, amorphous systems without DWPs appear to be extremely unlikely within
our new perspective. This issue certainly deserves deeper investigation.

Among the interesting problems within reach of our approach we might mention in
particular:

(i) an analysis of collective quantum effects [19] via a fully fledged quantum statistical
treatment of our spin-glass-type models [25],

(ii) a deeper understanding of relations between LTA and the phenomenology at the glass
transition,

(iii) an investigation of potential energy landscapes which respects the three-dimensional
nature of deviations from reference positions in view of possible consequences for
magnetic field effects and Aharonov–Bohm phases in glasses [26], replacing (8) by

Uint({uµi }) = 1

4

∑
i,j

∑
µ,ν

J
µν

ij (u
µ

i − u
µ

j )(u
ν
i − uνj ) +

∑
i

G(ui )

in which µ and ν label the three Cartesian components of the ui ,
(iv) the investigation of dynamic effects in the vicinity of the glass transition. In this respect

finally note that—the glass transition in the present set-up being continuous—there is still
need for improvements on the modelling side.

Acknowledgment

We are indebted to A Heuer, U Horstmann, and W Schirmacher for very useful discussions.



Models for low-temperature properties of glasses 6403

References
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[12] Jäckle J 1972 Z. Phys. 257 212
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